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Abstract. In this paper we present a simple algorithm that allows the control and an-

ticontrol of chaos. Considering two identical chaotic dynamical systems wich evolve for

di¤erent control parameter values, the value of the �rst system state variables is modi�ed

to gain the corresponding value of the second system in order to bring near the two trajec-

tories. Thus, the behavior of the �rst system is adapted to that of the second one. Three

examples are considered.
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1 Introduction

In the last years the stabilization of chaos like the slight perturbations of
a system parameter (the most known being the OGY method [9]), or the
changes in the system variables in the form of instantaneous pulses (GM
algorithm, introduced by Güemez and Matías [6], [8]) have proved to be of a
real interest. While the �rst class of algorithms are useful when we have access
to the system parameters without changing the state variables, the second
class of methods are useful in the cases when the system parameters are
inaccessible, namely in the cases of certain chemical experiments, biological
and ecological systems, electrical circuits etc.
The control algorithms using the parameter modi�cation imply generally

a supplementary knowledge of some data related to the system as Lyapunov
exponents, covariant and contravariant vectors etc. On the other hand the
algorithms which change the system variables are easier to implement, but
less performing since it is di¢ cult to �nd a clear link between the necessary
variables pulses and certain targeted trajectory.
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The anticontrol of chaos (or chaoti�cation) which makes chaotic a non-
chaotic dynamical system, or enhances the chaos in chaotic systems, have
also attracted increasing attention due to its great potential in many non-
traditional applications (see e.g. the Chen & Lai anticontrol algorithms based
on time-delay feedback [2], [12]). The anticontrol could be useful in mechan-
ical, electronic, optical, and particularly biological and medical systems.
Both the GM control and Chen & Lai anticontrol modify slightly the

systems structure because they change the system variables while the OGY
algorithm performs changes in the parameter values only.
GM control, applied to time-continuous systems, performs small changes

in the system variables every �t � h time interval in the form

x(t) x(t)(1 + �); (1)

where x is the state variable, � is a small positive or negative real number
and h is the integration step. Choosing adequately �t and � one can obtain
(but without a rigorous criteria at least to our knowledge) stable trajectories.
The GM algorithm was applied to discrete and continuous-time chaotic

dynamical systems (see e.g. [6] and [8]) but also to discontinuous dynamical
systems [3].
The present control-anticontrol algorithm (CA) represents a simpli�ed

variant of synchronization of chaotic orbits and is applied to continuous dy-
namical systems. Both phases can be switched at any evolution moment.
This is an important advantage because in practical examples and in nature
there are many di¤erent interactions and therefore systems do not evolve ac-
cording to a unique dynamic. It is reasonable to imagine that the evolution of
certain physical, biological or economical complex systems can be explained
by the combination of the dynamics of (almost) identical dynamical systems.

2 The algorithm

Let us consider a continuous autonomous dynamical system modeled by
the initial value problem

:
x = f p(x); x0 = x(0) ; (2)

where fp : Rn ! Rn is a vector continuous function and p 2 R represents
the control parameter.
The CA method implies the previous knowledge of the system behavior for
certain values of the control parameter in order to be able to select a �tar-
geted�trajectory.
Let p1 and p2 be the parameters for which the system (2) has, respectively,
chaotic and stable behavior. Corresponding to these values of p, consider
now the following two identical systems starting from the same initial condi-
tions

S1 :
:
x = fp1 (x); x0 = x(0) ;

S2 :
:
y = fp2 (y); y0 = x0 ; p1 6= p2:

(3)
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Let T1 and T2 be the trajectories corresponding to S1 and S2 starting
at the same moment t = 0:
Let�s suppose that the �rst system S1 evolves on a chaotic trajectory T1,

while the second one S2 on a stable trajectory T2.
CA algorithm allows both the control and anticontrol phases at any mo-

ment as will be seen next.
The key of the algorithm is to verify at �xed interval of time �t if the two

trajectories remain close enough one to another e.g. the Euclidean distance
between T1 and T2 at any time moment t veri�es the following condition

jx� y j < " ; t 2 [0; tmax]; (4)

where " is a small real positive number. This closeness is possible due
to the ergodicity property of continuous dynamical systems and because the
systems are identical.
When (4) is not veri�ed, i.e.

jx� y j � " ; (5)

we modify the values of the variables. The parameter �t is of major impor-
tance: it should be enough small in order that T1 and T2 be close enough
one to another and, the same, be not too small for computing time reasons.
Thus, if we want to obtain the anticontrol of chaos we perturb the value of
the state variable y of the stable system S2 in order to reaches the value of
the state variable x corresponding to the chaotic evolution of system S1

y  y + sgn(x� y)"; (6)

and the stable trajectory T2 becomes unstable following the chaotic behavior
of T1:
If we want to control the chaos of the �rst trajectory then, when (5) is ful�lled,
we use the reverse transformation

x x+ sgn(y � x)"; (7)

and the chaotic trajectory T1 becomes stable.

Remark 1 i) By practical reasons we are motivated to consider that the
switches (6) and (7) are performed inertially. However, in this paper we
consider for the sake of simplicity that these transformations act instantly.
ii) We do not intend to prove the chaotic character of anticontrol since

the anticontrol acts such that T2 follows the known chaotic trajectory T1.

Relations (6) and (7) are practically applicable for small enough " as
follows from the continuation of solutions theorem (see e.g. [10]).
In other words to obtain the control/anticontrol, the variables of one of

the systems are perturbed in order to evolve nearby the targeted trajectory.
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The anticontrol/control phases (6), (7) can start at any moment of time
in the interval [0; tmax]: In both cases one of the trajectories T1;2 becomes
only �"-identical�to the other i.e. the trajectories remain in an "-tube.

Proposition 1 The GM substitution (1) and CA substitutions (6), (7) are
equivalent.

Proof. Following (4) the perturbation of any of the two variables (6) or (7)
is

� = � j x� y j , (8)

with j � j < " a su¢ ciently small real number. Thus (6) could be written
as follows

y  y + �. (9)

When (5) is checked, at small enough �t, one can �nd a real small number
� such that � = �y and (9) becomes

y  y + � = y(1 + �), (10)

which represents the transformations (1). The same for (7).

The moments when the CA algorithm becomes active, t mod � t = 0,
can be chosen in the same way in both CA algorithm phases. In our examples
we chosen � t = (1 � 100)h, h being the time step integration, but also
bigger values were found in other considered applications.
One of the advantages of CA algorithm over the GM algorithm is that

CA algorithm allows to chose prior which of the possible stable (unstable)
trajectories are target.

Remark 2 i) A faster and easier variant for computer implementation can
be used instead of (5): it is easy to see that (5) is also veri�ed if the following
relations are true

jxi � yij � "0; i = 1:::n; "0 > 0:

Indeed

jx� y j =

vuut nX
i=1

(xi � yi)2;

and if
jxi � yij � "=

p
n; i = 1:::n;

then choosing "0 = "=
p
n one obtains (5):

ii) The condition that the both systems start from the same initial condi-
tions is not a necessary one: because of ergodicity, even if the systems start
from di¤erent initial conditions, after some �nite time, T1 and T2 will be
"�close enough to start the CA algorithm.
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iii) While the Chen & Lai anticontrol algorithm makes chaotic an orig-
inally non-chaotic dynamical system, CA algorithm allows, obviously, the
anticontrol of only chaotic systems. Since in the practical examples the dy-
namical systems are in the great majority chaotic, this restriction does not
a¤ect the algorithm utility.

3 Applications

In this section the CA algorithm is applied to three representative dynamical
systems. For this purpose a special program, using standard Runge-Kutta
method, was written to plot time series, phase portraits and the di¤erence
between the two trajectories.
The switch from the anticontrol to the control phase (starting at the

moment t = t1) presents transients which are typical �inertia�phenomena
for dynamical systems (see e.g. Fig.3). For t 2 [t2; tmax] the two systems
evolve uncontrolled.

3.1 Lorenz system

The mathematical model of the known system is

:
x1 = � a x1 + a x2;
:
x2 = �x1 x3 + b x1 � x2;
:
x3 = x1 x2 � c x3;

(11)

with a = 10; c = 8=3 and b the control parameter. For the chaotic
behavior we chose b1 = 28 while for the stable trajectory b2 = 8. The
control phase (for t 2 [0; t1] ) and the anticontrol phase ( t 2 [t1; t2] )were
obtained for � = 20 and " = 0:01 (Fig 1).

3.2 Chen system

The well-known Chen�s system modelling an electronic circuit [1]

:
x1 = a x1 + x2 x3;
:
x2 = �x1 x3 + b x1 � x2;
:
x3 = x1 x2 � c x3;

(12)

evolves on a stable trajectory for the control parameter c = �4, while for
c = �2:5 it behaves chaotically. The other parameters are a = 0:5; b = �10.
The CA values used in this case are � = 20 and " = 0:1: (Fig.2).

3.3 Rabinovich-Fabrikant system

The Rabinovich-Fabrikant (R-F) system models the stochasticity arising from
the modulation instability in a non-equilibrium dissipative medium [11]
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:
x1 = x2(x3 � 1 + x21) + ax1;
:
x2 = x1(3x3 + 1� x21) + ax2;
:
x3 = �2x3(b+ x1x2) :

(13)

The complex dynamical behavior of this system is presented in [4] and [7] and
was numerically studied using a special numerical method [5]. For a = 0:1
and the control parameter b = 0:98 the system behaves chaotically while
for b = 0:14 the system evolves on a stable limit cycle. The CA values are
� = 50 and " = 0:01 (Fig.3).

3.4 Circuitry implementation

The CA algorithm can be realized physically (see Fig.4). Suppose that
S1 and are S2 two circuits. If we want to obtain the anticontrol of chaos
we must perturb the value of the state variable y according to (6). The sgn
function is implemented by an operational ampli�er that compares the x and
y values and controls a switch. This switch selects the reference values +" or
-". Finally an adder circuit obtains y + sgn(x� y)".

4 Conclusions

In this paper we present a simple method to achieve both control and anti-
control of chaos in chaotic dynamical systems.
The algorithm performs variables perturbation to one of two identical

dynamical systems evolving with di¤erent values of the control parameter.
Knowing the system behavior as function of the control parameter we can
obtain, starting from a stable or unstable trajectory, any desired kind of
motions (stable or chaotic).
CA algorithm allows to switch at any moment the two phases (anticontrol-

control) which could be of useful in many practical situations, especially in
the cases of the dynamical systems with accessible variables.
No special link between " and �t was found yet.
The CA algorithm can in fact be regarded as a synchronization problem

with one system as the master system and the other system as the slave
system.
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Figure 1: The CA algorithm applied to Lorenz system (11) for � = 20 and
" = 0:01.
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Figure 2: The CA algorithm applied to Chen system (12) for � = 20 and
" = 0:1:
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Figure 3: The CA algorithm applied to R-F system (13) for � = 50 and
" = 0:01:
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Figure 4: Circuitry implementation of CA algorithm.


